
MICROWAVE BACKGROUND: PHENOMENOLOGY AND
OBSERVATIONS

G. JUNGMAN

ABSTRACT. This third lecture on the µ-wave background radiation dis-
cusses the phenomenology of temperature fluctuation measurements and
the current state of the observations.
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1. SKY MULTIPOLES

1.1. Review of Temperature Multipoles. First we briefly recall the spher-
ical harmonic expansion of temperature variation on the sky. Specializing to
a frame co-moving with the Earth, we wrote an expansion for the observed
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temperature variation in the form

∆T

T
(θ, φ) = δT (θ, φ) =

∞
∑

l=1

l
∑

m=−l

almYlm(θ, φ).

The signal on the full sky can always be represented in this form.

1.2. Correlation Function and Power. The two-point correlation func-
tion on the sky is a function of angular separation defined by

C(θ) = 〈δT (e1)δT (e2)〉e1,e2,e1·e2=cos θ

=
∑

l,m

∑

l′,m′

a∗

lmal′m′〈Y ∗

lm(e1)Yl′m′(e2)〉e1,e2,e1·e2=cos θ

If we define coefficients cl as in the second lecture,

cl =
1

2l + 1

l
∑

m=−l

|alm|
2,

then the correlation function can be written

C(θ) =
1

4π

∞
∑

l=1

(2l + 1)clPl(cos θ).

The correlation function at coincident points is interesting since it encodes
the average point-wise fluctuation on the sky.

C(0) = 〈δT (e)δT (e)〉e

=
∑

l

(2l + 1)cl.

Each cl is a sum of squares of amplitude coefficients, and the power associ-
ated with a given multipole is l(l + 1)cl. Therefore we can think of the cl

as defining a power spectrum of excitations as a function of multipole mo-
ment. This is the fundamental observable for the temperature fluctuation
signal.

1.3. Microwave Background as a Linear Filter. As we saw, the complete
dynamical system which describes the growth of radiation temperature fluc-
tuations is linear. Therefore the signal on the sky is some linear function of
the initial amplitude function, so without loss we can write

δT (~e) =

∫

dµ(~k)A(~k)g(~k · ~e),
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for some function g, where we assumed that the underlying dynamical pro-
cess in rotationally invariant. Then we can express the amplitude coeffi-
cients alm as

alm =

∫

dµ(~k)Tlm(k)A(~k),

where we introduced a kind of generalized transfer function,

Tlm(k) =

∫

dΩ(~e)g(~k · ~e)Ylm(~e).

1.4. Cosmic Variance. When discussing inflation we introduced the idea
of stochastic initial conditions; the Universe represents one realization of
an ensemble of possible universes. If this ensemble is assumed Gaussian
and isotropic, then it is completely characterized by a rotationally invariant
two-point function. We further assume the correlation function is local;
therefore we can write

〈A∗(~k1)A(~k2)〉 = A(k1)δ(~k1 − ~k2).

Then the ensemble average of the harmonic coefficient functions is given
by

〈a∗

lmal′m′〉 =

∫

dµ(k)T ∗

lm(k)Tl′m′(k)A(k)

=

∫

dΩ(e)

∫

dΩ(e′)Y ∗

lm(e)Yl′m′(e′)

∫

dµ(k)A(k)g(~k · ~e)g(~k · ~e′)

=

∫

dΩ(e)

∫

dΩ(e′)Y ∗

lm(e)Yl′m′(e′)G(e · e′).

G(e · e′) is defined as the result of the momentum integration appearing in
the second line. Expand G in Legendre polynomials,

G(e · e′) =
∑

l

blPl(e · e
′),

and use the addition theorem,

Pl(e · e
′) =

4π

2l + 1

l
∑

m=−l

Y ∗

lm(e′)Ylm(e).

Therefore

〈a∗

lmal′m′〉 =

∫

dΩ(e)

∫

dΩ(e′)Y ∗

lm(e)Yl′m′(e′)
∑

λµ

bλ

4π

2λ + 1
Y ∗

λµ(e
′)Yλµ(e)

=
4π

2l + 1
blδll′δmm′ .



µ-WAVE BACKGROUND: LECTURE 3 4

So we get the relatively simple result that the alm are independent random
variables. If the spectrum of input fluctuations is Gaussian, then the alm are
Gaussian, and thus completely characterized by the second moment cal-
culated here. In this case the cl are sums of squares of Gaussian random
variables. Given the Gaussian nature of the alm, it is easy to calculate the
probability distribution of cl values. A little algebra gives

f(cl)dcl =
(l + 1

2
)l+

1

2

(c̄l)
l+

1

2

1

Γ(l + 1

2
)
c
l−

1

2
l exp

(

−
(l + 1

2
)cl

c̄l

)

Here c̄l is the mean of the distribution. As this shows, the dispersion is
related to the mean, and the distribution becomes sharper with increasing
l. Within the stochastic theory of initial conditions, this sample variance
is an absolute limitation to the power of observations. It is called cosmic
variance.

2. SIMPLIFIED PICTURE OF OBSERVATIONS

Any real experiment has at least three complicating features. First, real
antenna patterns lead to finite resolution, with a resolution function that
depends on details of the experiment design. Again, everything is linear,
so we can account for this effect by introducing an l dependent window
function, Wl. The expression for the correlation function becomes

C(θ) =
1

4π

∞
∑

l=1

(2l + 1)clPl(cos θ)Wl.

Because window functions represent the effect of finite angular resolution,
they all fall off at large l. For example, the COBE window function was
modeled as

W COBE
l = exp

[

−
(

l + 1

2

)2
σ2

]

, σ ' 0.074.

This gives a half-maximum cutoff around l ' 12 or roughly 10 degrees.
The form corresponds to a Gaussian beam profile.

The second issue is noise. A sky map is made by pixelizing the sky and
integrating the signal in different pixels over time. Each pixel in a map has
some characteristic noise component. Because the observational strategy
will generally lead to inhomogeneous coverage on the sky, pixels have dif-
ferent histories and different noise characteristics. Note that this pixel noise
is purely local on the sky, whereas the signal is always interpreted as a func-
tion of l. However, for formal purposes we can expand the noise signal in
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the same way and model the observed signal as

COBS(θ) =
1

4π

∑

l

(2l + 1)
[

clWl + cNOISE
l

]

Pl(cos θ).

Notice that the noise does not carry a factor of the window function since it
has nothing to do with the sky. Therefore, when the window function drops
off, the observed signal becomes noise dominated.

The third issue is foreground sources. For example, dust emission in the
plane of the Galaxy must be modeled and subtracted in the analysis. Such
foregrounds are an important systematic. Synchrotron and free-free emis-
sions can be dealt with similarly. Ground-based experiments must also deal
with various antenna systematics due to ground emission.

Given this type of modeling, one typically attempts a maximum-likelihood
analysis to extract the signal parameters, the cosmological cl. When the cl

are given by calculations in a cosmological model, the results are interpreted
as giving cosmological parameters in a maximum-likelihood sense.

One final issue is sky coverage. A ground-based or balloon-borne exper-
iment typically sees only a fraction of the full 4π sky. Space-based ex-
periments must work with cut portions of the sky because of foreground re-
moval. This is an important point for data analysis, because all the formulae
derived above depend on full-sky coverage; it is assumed that the signal can
be analyzed into spherical harmonics, which require full sky coverage. With
incomplete sky coverage, it is not possible to fully distinguish the spherical
harmonic components. This means that the {cl} values determined by such
an experiment are not statistically independent since they do not represent
orthogonal components of the signal. In such a situation we cannot speak
about the error in a single cl value, but we must speak about the covariance
of the full set of values. Typically this covariance dies off for l separated
by some ∆l; this ”correlation length” for l values is sometimes called the l
”resolution” for the experiment.

3. COSMIC PARAMETERS

3.1. Ω. There is a very pretty way to use the microwave background to de-
termine the spatial curvature of the Universe. It relies on the fact that the
physical scale of acoustic waves at the time of decoupling is a fixed param-
eter; in particular, the acoustic horizon is determined solely by the speed of
sound in the medium and the elapsed time (the age of the Universe) at re-
combination. The first Doppler peak in the cl power spectrum comes from
the fundamental mode which lives right inside this acoustic horizon. There-
fore the position of the first peak in l space should be related directly to the
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FIGURE 1. Relation between apparent angular size and
transverse distance in an open universe. The solid curves
are the paths that light travels to get to the observation point.
The dotted lines are the paths that would be followed in a
universe with flat spatial sections, which lead to smaller in-
ferred transverse length scales on the fixed surface.

size of the acoustic horizon. This gives a location of l1 ' 200. Remember
that the width of this peak is not small, although it appears localized when
plotted versus log l. But the peak is a well-defined point, and the shape is
understood theoretically.

But if the Universe is curved, we have to be more careful about the trigonom-
etry. Suppose the Universe is open, with spatial sections of negative curva-
ture. Then parallel lines, and therefore the spacelike projections of null
geodesics, diverge from each other as they leave a point. The rays entering
your eye also diverge as we follow them backward onto the sky. Therefore,
the apparent angular separation of points on the sky is less than the ”actual”
angle subtended on some surface of fixed time in the past. This effect is
expressed by the formula for angular diameter distance which we have seen
previously.

So in an open Universe we calculate that the Doppler peaks must move to
higher l. In particular, the position of the first peak is a robust measure of
the apparent size of the acoustic horizon, and therefore of the curvature of
the Universe.



µ-WAVE BACKGROUND: LECTURE 3 7

FIGURE 2. Variation in power spectrum due to changes in
the baryon fraction. Taken from Ref. [HSSW95]

.

3.2. Other Stuff. All aspects of the multipole power spectrum are con-
trolled by basic physics which we understand. This physics is itself con-
trolled by the physical inputs, such as fundamental cosmological parame-
ters. For example, these include the baryon ratio ΩB and the Hubble con-
stant h. As part of a full likelihood analysis one can determine values for
these parameters.

For example, consider the baryon density. Obviously changes in the baryon
density cause changes in the equation of state of the photon-baryon fluid. In
particular, higher baryon densities mean less pressure, so that gravitational
collapse can create stronger compression of the fluid. Similarly, the rar-
efactions are driven to smaller amplitude. The first acoustic peak represents
power in fundamental compression waves, but the second peak corresponds
to power in rarefaction waves. This pattern repeats for odd and even peaks.
Therefore the best way to get information about Ωbh

2 is to examine the
relative heights of the different acoustic peaks.

4. COBE

COBE provided our first confirmed detection of the temperature anisotropy
for l ≥ 2. The satellite carried several instruments, including a differential
microwave radiometer (DMR). The DIRBE instrument measured infrared
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emission; its maps of dust emission were used to create cuts for infrared
foregrounds. The DMR operated at frequencies of 31.5 GHz, 53 GHz, and
90 GHz.

The COBE angular resolution was approximately 8 degrees; a model win-
dow function was introduced above. This means that COBE was completely
unable to detect the structure at higher l.

In a certain sense COBE fixes the overall normalization of the power spec-
trum. Note that there are two different ways to characterize this normaliza-
tion. The directly measured COBE quadrupole is Q = 10.7± 3.6± 7.1µK.
But it is better to use an average taking into account the values of all the
measured multipoles, which gives QPS = 15.3+3.8

−2.8µK. The directly mea-
sured quadrupole is perhaps a little low compared to the determination from
all measured multipoles; this may well be cosmic variance in action.

5. BOOMERANG

BOOMERANG is a balloon-borne experiment which has flown around the
Antarctic, targeting an area of low galactic emission in the Southern hemi-
sphere called the Southern Hole. The flight plan uses a prevailing circular
wind pattern to circumnavigate the pole. This allows relatively long expo-
sure times, 10 days or longer, more than is possible for a typical balloon
experiment.

The instrumentation and strategy allow for temperature sensitivity of '
20µK per pixel and an angular resolution of about 15′. Some regions are
scanned more often, giving a temperature sensitivity of about ' 10µK in
those regions.

The BOOMERANG data set is quite large, and the analysis required a dedi-
cated supercomputing effort. One analysis [M+02] has computed the power
spectrum from 150 GHz sky maps, covering about 3% of the sky. The first
peak position was found to be l1 ' 213+10

−13. At 95% confidence the analysis
gives 0.85 < Ω < 1.1 and 0.36 < ΩΛ < 0.72. The analysis also gives an
estimate for the baryon density 0.015 < Ωbh

2 < 0.029, which is consistent
with big bang nucleosynthesis. Of course, there are correlations in these
determinations.

6. MAP

The MAP satellite arrived at the L2 Lagrange point in October of 2001, and
is currently taking data. Earlier in April this year (2002) it finished its first
full-sky data taking; map making is underway.
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The basic parameters for the experiment are the angular resolution, ∆θ '
0.3 degrees, which corresponds to a maximum l of about 600, and the tem-
perature resolution of about ∆T ' 20µK per 0.3 degree-square pixel, with
a systematic limit of about 5µK per pixel. The MAP strategy is to observe
at five frequencies and use differencing of the signals at these frequencies to
subtract away combinations which have the spectral signature of foreground
emissions.

7. PLANCK

PLANCK is the ESA satellite mission for microwave background observa-
tion. The PLANCK experiment consists of two separate detector systems,
together operating at eight frequencies. The parameters for the instrument
illustrate its ambitions. The angular resolution is ∆θ ' 7′, which corre-
sponds to a maximum l of about 1500. The temperature sensitivity should
be about ∆T/T ' 10µK across the whole sky, with a lower limit of a few
µK in selected low background regions.

At the level of sensitivity which is the PLANCK goal, foregrounds will be a
very important part of the analysis. The foregrounds will be separated using
information from the wide range of observational frequencies.

8. POLARIZATION

Thus far in these lectures nothing has been said about polarization, and
very little about gravity waves. It turns out that, from a phenomenological
viewpoint, these topics go well together.

The microwave background signal is certainly polarized, due to the angu-
lar dependence of Thomson scattering. So far we have ignored this and
assumed that the radiation transport happens in an equal mixture of polar-
ization states. It turns out that including polarization has a relatively small
effect on the observed temperature signal. However, it does introduce more
observables into the picture; we can hope to measure the polarization of the
signal and thus obtain more information.

One thing which we learn about from polarization is late-time reionization
of the Universe. After the formation of stars, pockets of the Universe be-
come reionized due to UV emissions. The ionization density ne rises again,
above the primordial frozen value which we calculated in the first lecture.
This cloud of late-time ionization scatters and polarizes radiation.

The other thing which we might learn about from polarization observations
is gravity waves. Thus far we have ignored gravity waves in our discussions.
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FIGURE 3. Estimated power spectrum sensitivity for MAP
and PLANCK. Taken from Ref. [Kam98].
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It turns out that it is not too hard to include them in the calculations of the
primary temperature anisotropy. They can give a significant contribution
to the low l part of the signal because they represent a time-varying grav-
itational field throughout the time between recombination and the present;
think of it as a kind of purely relativistic integrated Sachs-Wolfe effect. The
problem is that this low l part of the temperature power spectrum is subject
to uncertainty due to cosmic variance. Because of this it may be impossi-
ble to extract the signal from this part of the data. However, gravity waves
give a contribution to the polarization signal which is detectable at large l
as well. So the best way to detect gravity waves may well be to measure the
polarization signal.
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