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ate Time Neutrino Mass Models:

« EXxperimental confirmation that neutrinos have
mass

 Theorists still have freedom to construct
alternative » mass mechanism (Seesaw, hard to

test)

e Introduce new symmetry to Lagrangian only for
V's (Example: U(1) flavor symmetry)

* Z. Chacko, et. al., Phys. Rev. D70, 085008 (2004); L.J. Hall and S.J. Oliver, Nucl. Phys. Proc. Suppl. 137,
269 (2004); Z. Chacko, et. al., Phys. Rev. Lett. 94, 111801 (2005); T. Okui, JHEP 09, 017 (2005);
H. Davoudiasl, Phys. Rev. D71, 113004 (2005).
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« Effective Lagrangian below the electroweak
symmetry breaking scale and close to the
neutrino flavor symmetry breaking scale

L7 = Liin +yoovN +V(¢), LN = Liin +yudvv + V(g),

— Neutrinos acquire mass, m, =y  x f, when symmetry
IS broken, where <¢> =1, f 2> 10 keV

— Pseudo-Goldstone bosons produced with mass Mg
(PGB's are light, Mg << )

— Neutrinos interact via the new scalar
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New r-v Interactions in Late Time
Neutrino Mass Models

ERes = M2./2m,
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How Do Resonance Interactions Affect
Neutrino Flux?

e Cross section for resonance in Breit-
Wigner form is Y s

ORes =
167 (M2, — s)® + M2T2

— I',, the boson decay width into two neutrinos
IS given by - y2 Mg

Y

o 47T

T

+ For a SRN on resonance o5, ~ Ve
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 Mean free path for neutrino through the CvB is
given by
1 Mg 2my E[t*

)\Res ~ ~ ~
Ny, 0 Res 73 73

e ForT,~9x10~eV

m, Eﬁes
5x 10~ 2eV 10M eV

ARes ~ D X 10_7pc

« For standard SRN neutrino energies and sub-eV
neutrino masses, mean free path is very small
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What iIs the Effect of New Interactions
on SRN Neutrino Flux?

 SRN neutrino energies will be redistributed at
each redshift, z

e Can expect a significant modification of the SRN
flux as a result of redistribution

— SRN flux can have regions of depletion relative to flux
without new Iinteractions

— SRN flux can have regions of enhancement relative to
flux without new interactions

e Can these modifications be detected at large
neutrino detectors?

July 6th, 2007



SRN and the Competltlon'
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Supernova Relic Neutrino Flux

dt
C_
d

AN(E)

F(E,) — /O Ron(2) 2) dz

* R¢, IS the comoving rate of supernova
formation

 dN/dE Is the energy spectrum for
neutrinos emitted from supernova*

e dt/dz accounts for cosmological evolution

*M. Th. Kell, G. G. Raffelt and H. Th. Janka, Astrophys. J. 590, 971 (2003).
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Flavor Composition of Neutrino Flux
that Emerges from a Supernova

« Matter oscillation effects lead to neutrinos emerging as mass
eigenstates

e Relationship between emergent flux and production flux depends on
neutrino mass hierarchy”

F,, = Pu|Ue|*F). + (1 — Py|Ue2|*)Fy,

Normal Mass Hierarch
Fy, = |Uat|>F2. + |Ueo|F2, g

_ 2 110 2 770
Fy, = |Ues2| Fy, [ Ue1| Fy, Inverted Mass Hierarchy
Fy, = Py|U|’F, + (1 — Py |U|?)F,)

Prr(Pr) = 0 adiabatic *A. S. Dighe and A. Y. Smirnov,
pH(pH) — 1 nonadiabatic Phys. Rev. D62, 033007 (2000)

|Ue1|? = cos?(012), |Ue2|? = sin?(012), |Ues|? = 0, 612 = 6,
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Modified SRN Flux

e Position of dip cutoff for neutrino mass
eigenstate | IS

 Resonance process is blind to the type of
neutrino that produced resonance

— Branching fractions given by

N 2 3 2
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« Modified flux of " mass eigenstate is
given by

- _ Res _ E : Res
:=1,2,3,1,2,3

e Observed electron antineutrino flux is then

Flje — COS2 912F,71 —+ SiIl2 912F,72
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Accumulative Resonance Effect

Signal in SRN flux will be combination of absorption and
replenishment from G decay over range of z
Which neutrinos will interact?

— For neutrinos emitted with energy greater than the resonance energy at
redshift z, they can produce G at resonance at z" if

EVReS ESN]‘_I_Z
1+ =

— Energy lower than resonance energy will never produce G.
Neutrinos from G decay get redistributed, i.e.

EG —fERes O<f<1

Energy observed today is

EObs_ fEReS fEI/SN

— — — Eunsca ere
Y 1+ 2* 1+ 2 4 ttered

where E  canereqd = EN,/(1+2) would be observed energy of neutrinos
without resonant process
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SRN Flux with New Interactions

e Depletion of flux in region
EJ/(1+2) < B < B

* Replenishment of flux from zero energy up
10 B scattereg TOr €a2Ch neutrino energy in
resonance region e eer

Final effect will be accumulative 0.5
(from a range of redshift) ol \

— E,(MeV)
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Parameter Space

Yv

107
Excluded
6 ________ h_h*----
SR | (R E |
107 I
Coupling
too weak
107*° ¢ .
. l I M. (eV)
10 100 1000 10000

*Coupling must be strong enough for effect to occur (blue diagonal line)
*Red horizontal line from BBN (Dirac case) or SN cooling (Majorana
case), green diagonal line for multiple scalars

«Off-resonance process important in very small window of parameter
space, black horizontal line (vv > 4 v‘s)

*For a 0.001 eV, 0.008 eV, or 0.05 eV neutrino, vertical lines are minimum
values of Mg to give depletion signal above anti-v, reactor background
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What can we Learn about ‘s from
Interactions?

Can neutrino-neutrino interactions through a
new light scalar allow one to distinguish

* Neutrino mass hierarchy?
— Normal mass hierarchy (m; ~ m, << m,)
— Inverted mass hierarchy (m; ~ m, >> mj,)

e Dirac vs Majorana neutrinos?
e Absolute scale of neutrino masses?
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Normal vs. Inverted Neutrino Mass
Hierarchy

E, (MeV) E, (MeV)
5 10152025 30 35 40 5 101520253035 40
Normal Hierarchy Inverted Hierarchy
'm, ~ 0.002 eV, m, ~ 0.009 eV, ‘m; ~m, ~0.05eV,
m; ~ 0.05 eV m; ~ 0.008 eV
*For 0.002 eV v to have Eg, ~ 15 Mey,  *For 0.05 eV v to have Ege ~ 15 MeV,
Mg ~ 250 eV Mg ~ 1.2 keV

G decays dominantly to v, and v,
which do contribute to anti-v, flux
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Adiabatic vs. Nonadiabatic?

e For nonadiabatic flavor evolution, neutrino flux emerging from
supernova is independent of neutrino mass hierarchy

 With new interactions, difference remains.
— Normal hierarchy, G = m, state dominantly, depletion

— Inverted hierarchy, G - m; and m, states dominantly, depletion
and enhancement

F{ em s Mev? )

, . k, = sz<9®)FSe T COSZ(%)EZ

- F;, = 0052(0@)]73e + sin2(0@)F3w
1

0.5

E, (MeV)
5 1015 20 25 30 35 40
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Dirac vs. Majorana Neutrinos

dF/dE, (cm 2s 1Mev 1)
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oIf neutrinos are Majorana particles (red dotted curve), each G decay produces
2 active neutrinos
*If neutrinos are Dirac particles (blue dashed curve) then G decays to v N-bar
or to N v —bar

Overall factor of %2 for Dirac vs. Majorana particles

July 6th, 2007



Multiple Dips

o x F(events yr'l MeV'l)
17.5
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« Two neutrinos could visibly go through resonance, i.e. two
light nearly degenerate neutrino masses ~ 0.01 eV one
neutrino mass approximately 0.05 eV (M ~ 630 eV)

 Ratio of peak positions is ratio of the masses of the
neutrinos

 Differential flux folded with cross section for
anti-v, + p 2 n + e* is relevant for water Cerenkov detector

« Cross section for antineutrinos on protons is increasing
function of the neutrino energy

Main features, i.e. dip locations, remain unchanged
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Signal Detection

o x F(events yr"1 MeV'l)

17.5 Expect ~ 11 events/year
_ = at ~ 15 MeV with no new interactions
Cross section 12.5 Expect ~ 2 events/year
for anti-v, + p 10 at ~ 15 MeV with new interactions

—->n + e7, relevant .
for water Cherenkov
detector

38]
nn n

E, (MeV)
5 10 15 20 25 30 35 40

*Depletion of flux at energies above ~ 8 MeV relative to no interactions

*In Gd-enhanced water Cherenkov detector, reactor antineutrinos main source of
background (bg is small above ~ 12 MeV")

In 5 years with no new interactions, 55 events, ¢ ~ 7.5 events

*Signal is event deficit, 55 — 10 = 45 events, so 45/7.5 - approx. 6 o effect

*L. J. Hall, H. Murayama and G. Perez, Phys. Rev. Lett. 95, 111301 (2005);
G. L. Fogli, E. Lisi, A. Mirizzi and D. Montanino, JCAP 0504, 002 (2005)
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Liquid Argon Detector

o x F(events MeV! per 5 yr) o x F(events M§V5_1 per 5 yr)
2.5 :
2 Normal Mass Hierarchy 2| Inverted Mass Hierarchy
1.5 1.5
1 1
0.5 e
40}2.'V (MeV)

E, (MeV)
40

*LAr detectors can measure the electron neutrino flux by interaction with Argon
nucleus

«Solar neutrinos provide large background below ~ 19 MeV, and atmospheric
neutrinos provide background above ~ 40 MeV

In window from 19 MeV to 40 MeV, could see ~ 25% reduction in expected
integrated event rate (Normal: 0.001 eV with 250 eV for Mg, Inverted: 0.05 eV
with 1.6 keV for M)
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Summary

* In late time neutrino mass models, additional light
bosons are generically present

e [nteractions between the SRN and CvB can lead to
dramatic changes of the SRN flux

* Measurements of these effects are well within reach of
future neutrino experiments

Cannot distinguish between mass hierarchy, or Majorana vs.
Dirac neutrinos because of reactor antineutrino/solar neutrino
backgrounds

Indicates the presence of the cosmic neutrino background

Could see a multiple dip signal leading to ratio of neutrino
masses

Can directly test some values of the parameters for late time
neutrino mass generation models
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