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e In the last

Seven years,
neutrino
physics has

seen
astonishing
progress!

Just compare this fit

to the solar neutrino
data circa 2000...
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e .. to the situation 5
years later!
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Neutrinos from core-collapse supernovae

e Progress in our understanding of neutrinos from core-collapse SN has
likewise been remarkable! Incomplete list:

e circa 2000: SN v's undergo relatively simple flavor transformations in a
smooth profile of the progenitor star, unaffected by the explosion, neutrino
self-refraction, etc.

e 2002: the front shock reaches the resonance densities while v's are being
emitted!

e R. Schirato, G. Fuller, astro-ph/0205390
e 2004: maybe more than one shock
e R. Tomas et al, astro-ph/0407132
e 2005-2006: neutrino self-refraction matters
e H. Duan, 6. Fuller, Y.-Zh. Qian, astro-ph/0511275 and subsequent work
e 2005: bubbles of low density matter
o J. Kneller, 6. McLaughlin, hep-ph/0509356
e 2006: neutrinos may come from an accretion disk, not just protoneutron star
e G. McLaughlin, R. Surman, astro-ph/0605281
e 2006: turbulent density fluctuations matter! J—

- " oy

e AF., A.Gruzinov, astro-ph/0607244 + in prep - ( ‘We are here!. \
‘'~ .-

*
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The progress continues!

e Neutrino astrophysics is a rapidly developing field
e see other talks at this workshop

e putting together all Anown effects for supernova neutrino
still remains to be done, as stressed by George Fuller

state-of-the-art SN models (multi-D hydro, neutrino
transport and decoupling, nuclear equation of state, etc)

neutrino oscillations MUST be there
neutrino self-refraction

front shock

turbulence

accretion disks/fallback

e whoever tells you "neutrino physics is done" doesn't know
what he's talking about! ;-)

july 6 2007, INFO 07, Santa Fe Alexander Friedland, LANL



Goal of this talk,

e This talk will focus on one particular effect,
modification of the MSW flavor transformation by
the turbulence of the explosion

e Rules of the game: known physics!
e No sterile neutrinos
e No non-standard interactions
e No maghetic moments

e 3 known active flavors with known oscillation parameters; the
only unknowns are 6,3 and the type of neutrino mass
hierarchy

e In future, needs to be combined with other effects
e Results may have applicability beyond the SN set-up
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MSW transformations in SN: simplest case

— smooth 10 1le
esee, e.g., A. Dighe, A. Smirnov, hep-ph/9907423

e Flavor transformations occur for both v's and anti-v's
e Depend on the type of mass hierarchy
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MSW transformations in SN: simplest case
— smooth profile

e Flavor transformations for both v's and anti-v's
e Depend on the type of mass hierarchy
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Flavor transformations in the first few
seconds

Resonance regions at a few x 10* km, a few x 10°
km, density profile unperturbed by the explosion

This means density gradients in progenitor is very
smooth, compared to the neutrino osc. length

on resonance, A .. ~ (Am2/(2E) sin260)!
e 10! km for E ~15 MeV and atm. Am?
-> the H-resonance is adiabatic so long as sin26,;>10-4-10-3
e afew x 102 km for E ~15 MeV and solar. Am?

-> the L-resonance is guaranteed adiabatic (parameters
known)

Original anti-v, are converted into anti-v, and
anti-v. (and vice versa) -> hotter observed
spectrum
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“Typical” spectra

SUPERNOVA v BURST

_ SN v burstt>2s
a=3.0

L1
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e from hep-ph/0412046; after T. Totani, K. Sato, H.E. Dalhed, and J.R. Wilson
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Observed vs. original spectra

e electron antineutrino spectrum
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Shock reaches the resonant layer

e At 3-b seconds,
shock reaches the
H-resonant layer,
while neutrinos are
still streaming out
of the protoneutron
star

e Shock is very steep
(photon mean free
path) ->transition
changes to
maximally 108
nonadiabatic Radius (cm)
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Schirato & Fuller, astro-ph/0205390
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Predicted signatures at Super-K and
megaton water-Cherenkov detector

eThomas, Kachelrie3, Raffelt, Dighe, Janka and Scheck, JCAPQ9, 015 (2004)

no shock no sho

forward shock — — -  forward shock

forward 4+ reversea
shock
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Turbulence

e Latest state of the art simulations show vigorous
turbulence behind the shock front at early times
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Scheck, Plewa, Janka, Kifonidis, and Muller, Phys. Rev. Lett. .92, 011103 (2004)

“Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions”
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3D simulations by

e Blondin, Mezzacappa, & DeMarino
e Many thanks to the Oak Ridge group!

e http://www.phy.ornl._gov/tsi/pages/simulations.html
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TVery important for the explosion

e Convection not just a curiosity, essential for the
explosion mechanism!

Snapshot of a 3D simulation
at t=340 ms
by Chris Fryer

Convection brings energy from
the dense region near the
proto-neutron star to the region
behind the shock

Herant, Benz, Hix, Fryer, Colgate
Ap. J. 435, 339 (1994)
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Turbulence persists to later times

density [Il'_iE | T'l:]
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Reproduces many observed features

e SN1987A: final Fe group velocities, strong H/He
mixing, prolate anisotropy of inner ejecta

e Pulsar kicks in excess of 1000 km/s possible

e "Many fundamental properties of observed
supernovae and neutron stars might be traced back to
the same origin, i.e. to non-radial hydrodynamic
instabilities during the first second of a neutrino-
driven SN explosion”

e For details see

e Kifonidis, Plewa, Scheck, Janka, and Muller, astro-
ph/0511369

e Scheck, Kifonidis, Janka, Muller, astro-ph/0601302
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Density fluctuations can be important for
neutrinos!

o Smoo‘rh profule adiabatic or non-adiabatic
vy = = v, SiN Oyt + v COSOgtm

Ve \»

&——Z \— v \X\:/-\'_)_
7/,;_ _\\\A T

_\ Ve \ Ve

e TIn the "noisy” density profile of the turbulence, a third op’rlon:
at densities near resonant, neutrinos may undergo “flavor
depolarization”.

e Effect known for a long time
e A.Schafer, S. Koonin, Phys. Lett. B 185, 417 (1986)
e W. Haxton, W-M. Zhang, Phys. Rev. D 43, 2484 (1991)

e .. many others
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Putting together simulations and our results
on neutrino evolution

e As we will see, relevant fluctuations are those
on scales < 10 km (0.3/sin 2045)(E,/10 MeV)

e Simulations don't resolve, unless 6,3 very small

e Also, the details of the turbulence may be
quite different in 2D and 3D

e Need physical model of density fluctuations in
supernova fturbulencel!

e Take only most basic (robust) features of the
simulations
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Use Kolmogorov

e Use Kolmogorov:

Energy pumped on large scales (outer scale”), dissipated on
small scales (“inner scale")

Between these two scales (in the "inertial range”), a
turbulent cascade is formed, carrying energy from large to
small scales

An eddy of a given size | fragments to smaller ones on the
time scale of one turn, t ~ |/v

Energy is tfransported without piling up at any scale in the
inertial range -> v2/(l/v)=const

-> Velocities behave as a power law, v, ~ vy (A/ry)?, with  ~
1/3 (incompressible fluid{ Density (femperatures) should
scale in a similar way.

e Scales relevant for neutrinos lie in the inertial range.
e Cascade forms quickly (on timescales of turn of large eddies)
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How does neutrino flavor evolution proceed
in Kolmogorov turbulence?

Up to now, unsolved problem!

e It is well-known that density fluctuations cou/d be important for neutrinos
e A.Schafer, S. Koonin, Phys. Lett. B 185, 417 (1986)
e W. Haxton, W-M. Zhang, Phys. Rev. D 43, 2484 (1991)
e Exist analytical treatments of neutrino evolution in "delta-correlated noise'
(3n(x) dn(y)) = ny? Ly 3(x-y)
e Nicolaidis, Phys. Lett. B 262, 303 (1991)
e Loreti & Balantekin, Phys. Rev. D 50, 4762 (1994)
e Loreti, Qian, Fuller, Balantekin, Phys. Rev. D 52 6664 (1995)
o
o

I

Balantekin, Fetter & Loreti, Phys. Rev. D 54, 3941 (1996)
Burgess & Michaud, Annals Phys. 256, 1 (1997)

e Yeft fluctuations in tfurbulence look nothing like delta-correlated noise. No
way to connect to large scale features observed in simulations. (Taken
literally, delta-corr. noise is unphysical.)

Spin precession in turbulent magnetic field treated nicely in
Miranda, Rashba, Rez, Valle, Phys.Rev.D70:113002,2004
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Task

e Is turbulence seen in realistic simulations
strong enough to affect neutrinos?

e Understand qualitatively the physics of flavor
evolution in Kolmogorov-like turbulence

e Derive analytical criterion for neutrino
depolarization in turbulence

e Compare with fluctuation amplitudes seen in
the simulations.
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Step I: toy model

e Start with a toy model: noise dn(x)
with a Kolmogorov spectrum
on(x) = F Y kP cos[kx + ¢(k)],
() kél | P(K)] 5~ —5/6
superimposed on a smooth linear
profile ny=x (justified since 6,5 is
small)

e Choose osc. parameters such that
without noise evolution adiabatic

e Investigate what happens as the
noise amplitude F changes
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Numerical calculations repeated with

random phases
e Three regimes are clearly seen
noise noise complete
negligible perturbative depolarization

adiabatic
in the absence
of fluctuations

0.1
noise amplitude F

july 6 2007, INFO 07, Santa Fe Alexander Friedland, LANL 26




Spin_Analogy

e Density fluctuations -> fluctuating magnetic
field -> spin random-walks on a sphere

F=0.01 =TI =51
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Depolarization limit

e For sufficiently large
density fluctuations
random walk covers the
sphere: complete
depolarization

e Either flavor equally
likely. State described by
the density matrix

_(1/2 0
‘0_(0 1/2)

july 6 2007, INFO 07, Santa Fe Alexander Friedland, LANL 28




Step I1: Enough to find the probability in
the perturbative regime

® If Poorturb> 7 -> Pirye = 7 ->complete depolarization

true

0.1
noise amplitude F
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Analytical result

e The (perturbative) probability of a transition
between mass eigenstates is given by (saddle point
approximgrion) .

F_ [ N
P ~ [ akc(G (—> _ -
perturb \/§n6 (k) > P 15 sin 26013

e Here C(k) is a Fourier transform of the correlation
function of the noise

C(k) = / da’:(5n(0)5n(a’:)>e—ik$

e and the spectral response function G(p) is given by
O©(p—1)
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General properties of solution

The spectral response function G(2E k/Am2sin 20,3) is
peaked at k~Am?sin 20,5/2E, up to a factor equals to
inverse neutrino oscillation length

For fluctuations on longer distance scales, the
response is approximately zero (exp. suppressed);
those fluctuations are followed adiabatically

Contributions of fluctuations on shorter scales are
power-law suppressed (~k=2)

Previously known analytical result for delta-
correlated noise <3n(0) 6n(x)>=ny? L, 3(x) is correctly
reproduced (in the region of applicability P<<1)
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What if non-adiabatic in smooth profile?

e In this case, neutrino oscillation length, A .. ~
(Am?/(2E) sin20)!is much greater than the
outer scale of the turbulence (the radius of
the shock) -> evolution non-adiabatic with or
without turbulent fluctuations

e the adiabaticity parameter

r(Am?sin 2013/4E)?

<1
Gp|dn0/dr}/\/§

Y
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Step I11: Solution and Kolmogorov spectrum

e For Kolmogorov turbulence
C(k) = /dm(5?’1,(0)577,(:1';))e"’;k’*"j — Ook—5/3

we have
. —2/3
Gp Am?sin 2913)
Ppe’r'tu'r'b ~ /K,.nf CO ( ~ T >< 084
VZng \ 21 ),

e This means

Prerturhs Ppertury < 1/2,7 > 1 perturb. noise, adiabatic smooth
P — : Ppertury = 1/2,7 > 1 large noise, adiabatic smooth
v K1 nonadiabatic smooth

=N
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Step IV: Use simulations

e Simulations see order one density
variations on large scales ry -> use to
fix C,

e The noise amplitude on small scales
turns out to be more than enou%h to
insure complete depolarization by
turbulence

ony 1 al/3

> O.J. U13

Ny

so long as the oscillation length stays
below the scale height of the smooth
component in the bubble (i.e.
adiabaticity)
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Robust with respect to the details of the
spectrum

e For general noise exponent a in

C(k) = / dz(6n(0)dn(z))e " = Cok®

we have

Snp/ng > f 075°TH/2

where the coefficient f varies from 0.04 to
0.25 as a varies from -1.5 to -2
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Spectrum from the Janka group

t=08s —+—

et

numerical cascade -

noise, resolution
I'rimited

sqrt(Power)

10 100 1000 10000 100000
L, km

e Many thanks to Timur Rashbal
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Off-resonance depolarization

e Since on resonance the effect is strongly
oversaturated, by continuity it should become
important before the density in the
turbulence is diluted down to the resonance
value

e -> The depolarization effect
e starts setting in earlier, possibly at ~ 3 seconds
e Turns on gradually (more so than the shock effect)

e See astro-ph/0607244 for details
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Turbulence shadow

e Turbulence produces 50/50 incoherent
mixture of the two states

e Density matrix diag(1/2,1/2) commutes
with any Hamiltonian -> any other features
neutrino encounters, before or after
turbulence, have no effect

e Sensitivity to front shock lost, replaced by | NN
the signal from turbulence \ § \
Fogli, Lisi, Mirizzi, hep-ph/0603033 (for 5-corr noise) | \ | \

e Turbulence casts a shadow! DOMMIMRY

e If neutrino encounters turbulence at >

resonant densities and in the absence of the
turbulence transition would have been
adiabatic, the shadow effect occurs

e At t~ 8 sec the L-resonance also becomes
depolarized -> no regeneration in Earth
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Turbulent shadow along different radial rays

e Still more SN =8s
thanks to RN "

Timur
Rashball
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Implications

e For neutrino properties:

e Signal change (lowering of E_,, broadening of the spectrum,
dip in the # of events) will occur e/ther in the neutrino or
antineutrino channel, indicating the sign of mass hierarchy

e Lower bound on 6,5, at the level of sin20,5> 10-4-10-3,
e For understanding supernova physics

e Observe the turbulence in the expanding hot bubble behind
shock in real time -> confirm the key ingredient of the
explosion mechanism

e Spectrum swapping v, <-> v, . will be incomplete -> be careful
in inferring original femperatures

e Signal may (strongly) depend on the direction!
e More work needs to be donel
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