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8 unknowns: pν and pν̄ . 8 equations.→ We can solve the
system.

What’s the use?
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t t̄ invariant mass

t t̄ resonance. (with Y. Bai, in progress)
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3TeV resonance with 300GeV width, 100 fb−1, after detector
simulation, dilepton channel. Red: signal. Blue: SM t t̄ . Other
background not included yet.



Measure top mass
◮ Vary top mass and try to solve the system.
◮ Look at number of solvable events (CMS note 2006/077):



Generalization
◮ Same topology, different processes.
◮ Assume mY = mY ′ , mX = mX ′ , mN = mN′ .
◮ Example:χ̃0

2 → l̃ l → χ̃0
1ll .

◮ All masses unknown.

Can we determine the masses?

With Cheng, Gunion, Manradella, McElrath, arXiv:0707:0030.



Number of solvable events distribution
Solvable means having physical (real) solutions. 2000 events,
with detector simulation. Input masses: 246.6, 182.4, 85.3.
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One dimensional fits

◮ Number of solvable events, fixing two masses.
◮ Take the “turning” point as the estimation of the mass.
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Recursive fits
Starting from some random masses satisfying mN < mX < mY ,
apply one-dimensional recursive fits.
Update the masses after each fit.
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Figure: After cuts |η|µ < 2.5, pTµ > 10 GeV, /pT > 50 GeV

.

The masses go up, but the fits in general do not converge.
However, the number of events at the “turning” points are
maximized around the correct mass.



Number of events at the turning points
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◮ Record the number of events at the turning points after
each fit of mN . Fit the plot to a polynomial and take the
peak position as the estimation for mN .

◮ Do a few one-dimensional fits for mX and mY with fixed mN

until they are stablized.



Number of solvable events distribution
The “+” is the fitted mass.
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More complicated topology
with Cheng, Engelhardt, Gunion, McElath. arXiv:
0802.4290

Example:q̃ → qχ̃0
2 → ql̃ l → q̃χ0

1ll
Assume mZ = mZ ′ , mY = mY ′ , mX = mX ′ , mN = mN′

Same unknowns p1, p2, more equations.
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But 8 unknowns: p1, p2. Number of equations less than number
of unkowns.



A pair of events.
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8 more unknowns q1, q2, but 10 more equations. 16 unknowns
vs 16 equations, we can solve the system and obtain discrete
solutions.
The system can be reduced to 13 linear equations+ 3 quadratic
equations, so generally we have 8 complex solutions. Only
keep real and positive ones for masses.
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An ideal example
q̃q̃ → qχ̃0

2qχ̃0
2 → ql̃ lql̃ l → qχ̃0

1llqχ̃0
1ll

SPS1a, masses: ( 97.4, 142.5, 180.3, 564.8 ) GeV
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2 solutions per pair on average.



Realistic case

◮ Wrong combinations. One event, 8 combinations for 2µ2e
channel, 16 for 4µ or 4e channel. A pair of events, 64, 128
or 256 combinations.
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Realistic case

◮ Wrong combinations. One event, 8 combinations for 2µ2e
channel, 16 for 4µ or 4e channel. A pair of events, 64, 128
or 256 combinations.

◮ Finite width. 5GeV, 20MeV, 200 MeV for q̃L, χ̃0
2 and ℓ̃R .

◮ Flavor splitting. medL
− meuL

∼ 6GeV .

◮ Initial/final state radiation.
◮ Extra jets. g̃ → qq̃L.
◮ Experimental resolutions. Simulated with ATLFAST.
◮ Background events.



Realistic solution distributions
Cuts:

1. 4 isolated leptons with pT > 10 GeV, |η| < 2.5, consistent
flavors and charges.

2. No b-jet, ≥ 2 jets with pT > 100 GeV, |η| < 2.5. Take 2
highest-pT jets as partiles 7 and 8.

3. pTmiss > 50 GeV.
About 1000 events (∼ 700 signals) after cuts for 300 fb−1.
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Fit the masses

Fitting each curve using a sum of a Gaussian and a quadratic
polynomial and take the peak positions as the estimated
masses, we get {77.8, 135.6, 182.7, 562.0} GeV.
Averaging over 10 different data sets:

mN = 76.7 ± 1.4 GeV, mX = 135.4 ± 1.5 GeV,
mY = 182.2 ± 1.8 GeV, mZ = 564.4 ± 2.5 GeV.

The statistical errors are very small, but the masses are biased.
Inputs: ( 97.4, 142.5, 180.3, 564.8 ) GeV



Some model-independent techniques
I. Cut off “bad” combinations

◮ For the ideal case, the correct combination of one event
can always pair with any other event and yield solutions.
So the number of events that pair with this combination is
maximized as Nevt − 1.

◮ After smearing, this is no longer true, but the correct
combinations still have statistically larger number of events
to pair.

◮ We cut on this number so that we have about 4
combinations per event left ( originally 11).



II. Number of solutions weighting.

A pair with many solutions enters with a large weight, although
at most one of the solutions can be the true masses.
→ Treat each pair equally, weight the solutions by 1/n,
n=number of solutions for the pair.



III. Cut on mass difference
Some solutions may have one or more, but not all four masses
to be close to the true masses. Remove these solutions by a
mass window cut.
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Require all three mass differences to be within the mass
window defined by 0.7× peak height.



Mass peaks with smaller biases
SPS1a
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10 sets:

mN = 94.1 ± 2.8 GeV, mX = 138.8 ± 2.8 GeV,
mY = 179.0 ± 3.0 GeV, mZ = 561.5 ± 4.1 GeV.

Compare: { 97.4, 142.5, 180.3, 564.8 } GeV



Another mass point
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10 sets:

mN = 85 ± 4 GeV, mX = 131 ± 4 GeV, mY = 251 ± 4 GeV, mZ = 444 ± 5 GeV.



With this precision, we know more about the “model” and thus
know how to Monte Carlo. The remaining biases can be
removed by comparing with simulation.
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Conclusion and Outlook

◮ Simple but Powerful.
◮ Pure kinematic, don’t assume a model.
◮ A good start point for a more complicated method, ex, a full

likelyhood fit with matrix element, PDF. . .
◮ Other topologies? Multiple channels?
◮ Spin determination?
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