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New physics and cascade decays
•Highly anticipated signal at LHC:

pp → X → (n jets) + (m leptons) + MET

• Typically do not expect to fully reconstruct events.

◦ Invariant mass distributions can be a powerful tool

◦ Lorentz-invariant characterization of object correlations.

◦ Directly computable relation between observables and underlying
model parameters

• Post-discovery: distribution shapes important to discrim-
inate between models

◦ earlier: iteratively generate and test hypotheses

◦ later: detailed measurements
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SUSY On-Shell Cascade Decays
•Basic process: cascade X → Ψ1Y → Ψ1Ψ2M

•Distribution shape 1
Γ

dΓ
dm = P

(4J+1)
k (m) sensitive to spin of

intermediate particle Y :

◦ Ji = 0, 1/2: coefficients independent of masses

◦ Ji ≥ 1: coefficients depend on masses: different couplings of longi-
tudinal, transverse degrees of freedom

• SUSY models: theoretical distributions are simple and
universal.

◦ three shapes: intermediate scalar (1), intermediate fermion (2)

◦ Starting point for analysis aimed at measuring NP properties (cou-
plings, masses, spins, ...)

◦ Similar analyses for same-spin partner models are possible and de-
sirable.
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An Example
•A simple example: mSUGRA dileptons,

χ0
2 → `± ˜̀∓

R → `±`∓χ0
1

◦ Dilepton invariant mass m`` measures angular correlation of leptons

◦ Range set by kinematics: 0 ≤ m`` ≤ Mmax

◦ Intermediate scalar, so |M|2 = constant

◦ Channel determined by quantum numbers of intermediate state:
OS, SF only

•Dilepton “triangle”:

◦ with x = m``/Mmax,

◦ 1
Γ

dΓ
dx = 2x
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Intermediate fermions
•Distributions depend on helicity state of intermediate

particle A. Barr

“Hump”
1
Γ

dΓ
dx = 4x(1− x2)

“Cusp”
1
Γ

dΓ
dx = 4x3
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• SUSY: chiral couplings to leptons ⇒ hump = same-sign,
cusp = opposite-sign

• hump + cusp = triangle: must be able to separate chan-
nels to observe

• Importance of cross-channel correlations: Simultaneous hump
SS and cusp OS

◦ same normalizations and endpoints

◦ same distributions in OF, SF channels

◦ check of theoretical assumptions (R-parity, flavor structure, ...)
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SUSY Dileptons

Triangle Hump Half-Cusp

Opposite-Sign

Same-Flavor

Opposite-Sign

Opposite-Flavor

Same-Sign

Same-Flavor

Same-Sign

Opposite-Flavor

◦Minimal assumptions: neglect Yukawa couplings, L-R slepton mix-
ing; L-R ordering
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SUSY Dileptons

Triangle Hump Half-Cusp

Opposite-Sign χ0
i → ˜̀∓

L,R`±

Same-Flavor ↪→ χ0
j`
∓`±

Opposite-Sign

Opposite-Flavor

Same-Sign

Same-Flavor

Same-Sign

Opposite-Flavor

◦Minimal assumptions: neglect Yukawa couplings, L-R slepton mix-
ing; L-R ordering
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SUSY Dileptons

Triangle Hump Half-Cusp

Opposite-Sign χ0
i → ˜̀∓

L,R`± ˜̀±
L,R → χ0

i `
±

Same-Flavor ↪→ χ0
j`
∓`± ↪→ ˜̀±

R,L`∓`±

Opposite-Sign ˜̀±
L,R → χ0

i `
±

Opposite-Flavor ↪→ ˜̀′±
R,L`′∓`±

Same-Sign ˜̀±
L,R → χ0

i `
±

Same-Flavor ↪→ ˜̀∓
R,L`±`±

Same-Sign

Opposite-Flavor ˜̀±
L,R → χ0

i `
±

↪→ ˜̀′∓
R,L`′±`±

◦Minimal assumptions: neglect Yukawa couplings, L-R slepton mix-
ing; L-R ordering
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Third-generation final states

• Leptons (e, µ) are “easy”: observed distribution very close
to theoretical distribution

• Final states with third-generation fermions (τ , b) are more
complicated:

◦ more complicated as experimental objects

◦ must work harder to connect underlying theoretical distribution to
experimentally observed distribution

◦ richer phenomenology: an excellent laboratory for measuring model
parameters
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b-` distributions

• Processes giving b, ` on adjacent steps of a cascade:

◦ b̃±→ b±χ0 → b±`± ˜̀∓, b±`∓ ˜̀±

◦ t̃±→ b∓χ±→ b∓`±ν̃

• Typically expect third-generation squarks will be appre-
ciably mixed.

◦ b-` distributions will depend on the mixing

◦ for the moment set mixings to zero for clarity

• Sensitivity depends on whether or not b-jet is signed.
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Unsigned b-` distributions

• Sbottom decay via Dirac neutralino:

◦Models with unbroken R-symmetry: neutralinos acquire Dirac mass
by marrying new chiral adjoint

◦ Compatibility with EWSB requires all sfermions have equal R-
charge; thus (e.g.) b̃L → b−`− ˜̀+

R is allowed but b̃L → b−`+ ˜̀−
R

is forbidden.

◦ ⇒ only one process contributes to any given b− `± final state, and
the observed distribution is a hump.
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Unsigned b-` distributions

• Stop decay via chargino:

◦ If chargino is pure gaugino: t̃L → bχ± → b`ν̃ gives a hump distri-
bution.

◦ If chargino is partly higgsino, the couplings are no longer purely chi-
ral, and the spin correlations are partially washed out but typically
still significant.
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Unsigned b-` distributions

• Sbottom decay via (Majorana) neutralino:

◦ the process b̃L,R → bχ0 → b` ˜̀
R,L gives a hump distribution in

the same-sign channel and a cusp distribution in the opposite-sign
channel, just as for dileptons.

◦ the process b̃L,R → bχ0 → b` ˜̀
L,R gives a cusp distribution in

the same-sign channel and a hump distribution in the opposite-sign
channel.

◦ If one does not sign either the b-quark or the lepton, then the ob-
served distribution is a triangle. (Of course, this is still an interesting
kinematic feature!)

◦ Separately considering b-`+ and b-`− gives sensitivity to any pro-
duction asymmetry favoring squarks over anti-squarks.
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b-jet signing
• Sign information a powerful lever! Signing the b-jet allows

separate resolution of opposite-sign, same-sign distribu-
tions.

◦ measure Majorana neutralino

◦ measure relative handedness of sbottom, slepton

• Possibility of signing b-jets using muon from b → cW al-
lows nontrivial spin correlations to be seen in the quark
sector without the need for overall production asymmetry.

◦ O(10%) of b-jets can be signed;

◦ mis-sign rate O(30%) reported in ATLAS TDR, D0; optimistic this
can be improved (S. Schnetzer, Y. Lin)

◦ irreducible mis-sign fraction O(13%) due to neutral B meson oscil-
lation
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Mixings
• Expect mixings (R-L sfermions and gauginos-higgsinos)

to be typically non-negligible

◦ Effect of mixings is to reduce chirality of vertices. Total distribu-
tion in given channel contains admixture of “wrong” distribution,
depending on mixing angles

• Sfermion L-R mixing:

⇒

◦ Relative normalization of distributions set by sfermion mixing angle

◦ Gaugino-higgsino mixing qualitatively similar
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Mixing and b-`
• To measure spin and mixings, fit b-` distributions to a

sum of hump and cusp distributions:

◦Dtheory(x) = fH(x) + (1− f )C(x), where f depends on ratios of
Yukawas

◦ fit observed distribution with correction for mis-sign rate

◦ fit f in both opposite-sign and same-sign channels

• Example, for intermediate pure bino and cos θb = .78.

b-` distributions with 15% (red) and 30% (blue) mis-sign fraction
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`-τ and di-τ final states

• Theoretically, τ final states give window into interesting
physics:

◦ λτ can be appreciable (large tan β)

◦ ⇒ L-R stau mixing

◦ ⇒ gaugino-higgsino mixing

◦ In many models, stau LSP leads to τ -rich final states

• Experimentally, full four-momentum of τ not reconstructed

◦ compute modified distributions: folding theoretical distributions
with energy spectra of daughter particles

◦ τ polarization statistically measurable

18



τ polarization
• τ polarization can be determined from spectrum of its

daughters:

Fractional energy distribution for reconstructed 1-prong τs

• unique window into chiral structure of NP
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An example: ditau triangle
•Consider the process χ0

i → τ τ̃L,R → ττχ0
j. Different staus

give different invariant mass distributions for the recon-
structed one-prong taus:

Di-τ triangle distributions for a pure τ̃L (blue) and pure τ̃R (red).
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•Mixing: Now three possible distributions, TLL, TLR, TRR.

• Two parameter fit measures stau and neutralino identi-
ties.

scaled di-τ triangle distributions; identical areas

• challenging measurement: requires high statistics, good
background characterization
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Conclusions
•Difermion invariant mass distributions a powerful analy-

sis tool

◦ correlations across channels useful in checking model parameters,
assumptions

◦ third-generation fermions are challenging but potentially very re-
warding: sensitivity to spin, mixing, chiral structure

•Cascade decays still repay further analytic study (even
now!): analyses will require good understanding of addi-
tional invariant mass distributions:

◦ Nonadjacent fermions

◦ Three-body decays; finite width effects

◦ Same-spin partners

◦ Other final states: `V µ, `h, ...
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