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Motivation

Why study real time quantum field
dynamics non-perturbatively?

e Quark-gluon plasma in heavy-ion collisions
e Early universe

e Finite chemical potential in QCD

How?

e Heisenberg / Schrddinger egs. - impossible
e Monte Carlo - complex “probabilities”

e Revert to approximations

— Fully classical - Non-perturbative, Rayleigh-
Jeans type divergence

— Homogeneous Hartree - No thermalization
— Inhomogeneous Hartree - This talk



©*-model as play ground

e Heisenberg operator equations

p=7, 7=(OA—-pu?)@—\p>

e Discretize ¢ field on (1 4+ 1 dim) lattice

e Focus on Green functions, assume Gaussian
density matrix. Hartree approx. gives e.o.m.
for 1 and 2-point functions

— 1-point function: mean field (¢) = @z,

— 2-point function can be expanded in mode
functions f2

(B2%y) conn Z[(l + nd) fEFY* + nQ fo £2

— Gaussian: higher-point functions follow

— nd = 0: modes start in vacuum state



Hartree equations of motion

e Equations for ¢ = (¢) and the f%'s
fo = Dpe—[n?+A(p5+3>_(2na+1) f2 f8)]pa
87

Fo = AfE—[pP4+ABp2+3 > (2n04+1) fo 1o £

— Requires only mass renormalization
— The mean field ¢ is inhomogeneous

— There are O(N?) d.o.f.
— Classically, no f's, only O(N) d.o.f.

e Hamiltonian dynamics: too much like classi-
cal? UV-catastrophe?

e Gaussian: too semi-classical? no tunneling



e How accurate is Hartree dynamics?

— Homogeneous ¢: no thermalization

— Inhomogeneous ¢: “Scattering on mean
field ©". Does it thermalize?

e Use free field formula to compute mode en-
ergy wj and particle density n; from two-point
functions
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e [est for Bose-Einstein distribution
n, = 1/(e“x/T —1). Classically, n;, =T /wy

e Checked using Monte Carlo (imaginary time)



Monte Carlo simulation
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e Measure ($z@y)conn

e Assuming BE distribution, compute dispersion
relation w(k?,,)

e Same parameters as in Hartree,
T/m =1, Lm = 25.6, 1/am = 10 (N; = 20)

e Free field form holds very well



~gaUSS

e Facilitate Hartree: p =Y, p;p;

e Average over initial conditions and/or time

(PzPy) conn =

S pil@e@y) D + o8l — (disconn.)

1

e Gaussian initial states (modes in vacuum)

— Far from equilibrium: few plane waves, ran-
dom phase «

O kma/x
ng =20, gz =v, Tz = »_ Ajcos(kjr + aj),
J

— Closer to equilibrium: mean field from BE
distribution

P(pp, m,) o exp[— (e 10 — 1) (nf 4+ wPp?)/2wy]



T hermalization?

Two stages in time development

1. Creation and scattering of particles,
Equilibration towards BE distribution

2. Gradual emergence of equipartition,
starting with low w particles

e Rates depend on interaction strength

Starting far out-of-equilibrium

e [hermalization extends too slowly towards
large w particles.

Starting with BE distribution for mean field

e BE-equilibrium sets in very fast

e But equipartition is inevitable
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Towards equilibrium
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Far out-of-equilibrium initial fields
Particle distribution plotted as Log (1 4+ 1/n)
Weak coupling \/m? = 1/12, T/m = 1.1

Particles with w;/mS2 equilibrate quickly, fur-
ther progress slow



Fast thermalization
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e Early times tm = 10,30 and 100.
e Bose-Einstein distribution for all w’s

e The straight lines are fits with temperature
T/m = 0.66,0.78 and 0.86 (top to bottom)

e Stronger coupling \/m? = 1/4, Lm = 26



Time scales
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2 Cooling down (Classical)

e [ime dependence fitted to exponential form
T(t) = Too £ Aexp(—t/T)

e Warming-up time is short, 7/m =~ 20

e Cooling-down time is long, 7/m ~ 2500
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From BE to equipartition

Log (1/n+1) time =300
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e Particle distribution Log (1 4+ 1/n) for a later
time tm = 300

e The straight line is a Bose-Einstein distribu-
tion with temperature T7'/m = 0.92

e The curved line fits n = T 555 /w With a “classi-
cal” temperature T 5ss/m = 0.31 for the par-
ticles with wS1.6
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From BE to equipartition

Log (1/n+1) time =6900
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e Same as previous but at a much later time
tm = 6900

e Bose-Einstein temperature 7'/m = 1.08

e ‘‘Classical’” temperature Ti,ss/m = 0.27 for
the particles with ws2.4
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From BE to equipartition

Log (1/n+1) time =15700
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e Same as previous but at a much later time
tm = 15700

e Bose-Einstein temperature T'/m = 1.13

e ‘‘Classical” temperature Tg;ss/m = 0.24 for
the particles with w3
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Equipartition
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Very large time tm = 4 10°

Small toy model Lm = 1.1, (N = 20)

Dashed line n = T /w fits data with T /m = 2.2

Only zero mode and alternating mode deviate
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Finite temperature simulation
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e Times in range 100 < tm < 4000
e Weak coupling A\/m? =1/12, Lm = 23
e Modes started in vacuum (7T'=0), 7 ~ 200

e Particles are created fast, with BE distribution
and constant temperature, T/m ~ 6.5
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Reduced number of modes
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e Full lines: simulation with all modes

e Dots: Only 32 of 128 modes with initial (plane
wave) energies w/mS17

o wmaz/T =~ 3 can be much below cut-off
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Conclusions
Thermalization with inhomogeneous Hartree
approximation
— Slowly moving towards classical
Long period of thermal equilibrium??

— If not starting too far out of equilibrium
If interactions not too strong
If semi-classical good enough, (high T")

Number of mode functions can be kept fixed
for cut-off — oo

— Number needed depends on T

— Saves factor N in CPU time

How about QCD at finite u?
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