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Program

• Classical baker’s map

• A class of quantum baker’s maps

• Classical limit?

• Entangling power
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Motivation

• Interest in the classical baker’s map stems from its simplicity

B displays all essential features of classical chaos
B straightforward characterization in terms of symbolic dynamics

• A quantum baker’s map would be an ideal candidate for the investigation of
quantum chaos, however,

B there is no unique quantization procedure
B A complete understanding of quantum chaos requires the investigation of

‘nonstandard’ quantizations
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Classical baker’s map

qn+1 = 2qn − b2qnc where • q, p ∈ [0, 1)
pn+1 = (pn + b2qnc) /2 • bxc is the integer part of x
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Classical baker’s map
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Finite-dimensional Hilbert space

• Work in the D-dimensional Hilbert space HD

• spanned by either the position states |qj〉, with eigenvalues qj = (j +1/2)/D,

or momentum states |pk〉, with eigenvalues pk = (k +1/2)/D,

where 〈qj|qk〉 = 〈pj|pk〉 = δjk j, k = 0 . . . D − 1

• which are related via the finite Fourier transform

〈qj|F̂ |qk〉 ≡ 〈qj|pk〉 =
1√
D

eiqjpk/~

• Both position and momentum are chosen to be antiperiodic:

|qj+D〉 = −|qj〉 |pk+D〉 = −|pk〉 (toroidal phase space)

• For consistency of units: 2π~D ≡ 1
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Finite-dimensional Hilbert space

• Also define coherent states for HD:

|a〉 ≡ 1
N

(
2
D

)1/4 D−1∑

j=0

exp
[
−πD

2
(|a|2 + a2

)− πD
(
q2
j − 2qja

)]

· θ0

[
iD(qj − a)

∣∣iD]|qj〉

where a ≡ q + ip, |a± 1〉 = − exp[±πiDp]|a〉, |a± i 〉 = − exp[∓πiDq]|a〉,
and θ0 is called a theta function:

θ0

[
z
∣∣τ] ≡

∞∑
µ=−∞

exp
[
iπ

(
τµ2 + (2z + 1)µ

)]

• The Husimi function is then |〈ψ|a〉|2
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Quantum baker’s map

• For dimensions D = 2N

• model our space as the tensor product of N qubits with a binary expansion
association

|qj〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN〉 xl ∈ {0, 1}

where j ≡ x1 . . . xN · 0 =
N∑

l=1

xl2N−l and qj ≡ j + 1/2
D
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Quantum baker’s map

• Now define the partial Fourier transformed states

|aN−n . . . a1 • x1 . . . xn〉 ≡ Ĝn |x1〉 ⊗ · · · ⊗ |xn〉 ⊗ |a1〉 ⊗ · · · ⊗ |aN−n〉

≡ |x1〉 ⊗ · · · ⊗ |xn〉 ⊗ 1√
2N−n

∑
xn+1,...,xN

|xn+1〉 ⊗ · · · ⊗ |xN〉e2πiax/2N−n

where a ≡ a1 . . . aN−n · 1 and x ≡ xn+1 . . . xN · 1

• The operator Ĝn is the partial Fourier transform

• Ĝ0 = F̂ and ĜN = i1̂
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Quantum baker’s map

• For N = 2 the partial Fourier transformed states are
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Quantum baker’s map

• For N = 2 the partial Fourier transformed states are

• Two different quantum baker’s maps can be defined.
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Quantum baker’s map

• A whole class of quantum baker’s maps B̂n (n = 1, . . . , N) can be defined

B̂n =
∑

x1,...,xn

a1,...,aN−n

|aN−n . . . a1x1 • x2 . . . xn〉〈aN−n . . . a1 • x1x2 . . . xn|

• This class of quantum baker’s maps was introduced by Schack and Caves

• The original Balazs-Voros-Saraceno baker’s map is the special case n = 1
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Quantum baker’s map

• Starting in a coherent state:
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• Starting in a coherent state:



12

Classical limit?

• ~→ 0 means the total number of qubits N →∞. But how? n = ?
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Classical limit?
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Classical limit?

• We consider only one iteration of the map

• and assume decoherence provides classicality for long times

• We derive a semi-classical approximation for the propagator in the coherent
state basis: 〈b|B̂|a〉 → ? as N →∞

• We need to consider the 3 cases θ = 0, 0 < θ < 1 and θ = 1 separately.
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Classical limit?

• θ = 0: Put n = s ≥ 1 and define S = 2s

〈b|B̂|a〉 = SD−3/2
∞∑

µ,ν=−∞

1∑
x1=0

D/S−1∑

j,k=0

2D/S−1∑

l=0

S/2−1∑
m=0

exp
[
− πD

2

(
|a|2 + |b|2 − a2 − b∗2

)
+ iπ(µ− ν)

− πD
(
qk + x1/2 + (Dqm − 1/2)/S − a + µ

)2

− πD
(
ql + 2(Dqm − 1/2)/S − b∗ + ν

)2

+ iπSD
(
qjql + x1ql/S − 2qjqk

)]
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Classical limit?

• Now use variants of the Poisson summation formula to replace sums with
integrals

〈b|B̂|a〉 = SD3/2
∞∑

µ,ν,α

β,γ=−∞

1∑
x1=0

S/2−1∑
m=0

∫ 1/S

0

dx

∫ 1/S

0

dy

∫ 2/S

0

dz

exp
[
− πD

2

(
|a|2 + |b|2 − a2 − b∗2

)
+ iπ(µ− ν − α− β − γ)

− πD
(
y + x1/2 + m/S − a + µ

)2

− πD
(
z + 2m/S − b∗ + ν

)2

+ iπSD
(
xz + x1z/S − 2xy

)
+ 2iπD (xα + yβ + zγ)

]
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Classical limit?

• Now use the method of steepest descents to make a saddle point approximation
on the triple integral. And with a little algebra

〈b|B̂|a〉 =

√
4
5

exp
[
− πD

5

{(
2a1 − b1 − b2a1c

)2 +
(
a2 − 2b2 + b2a1c

)2

+ i
(
3a1a2 + 3b1b2 + 4a1b2 − 4a2b1

)

− 2ib2a1c
(
a1 + 2b1 + 2a2 + b2 − b2a1c/2

)}]
+ o(1)

• where a = a1 + ia2 and b = b1 + ib2

• The semi-classical propagator is O(1) only when (b1, b2) is the iterate of
(a1, a2) under the action of the classical baker’s map
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Classical limit?

• The semi-classical propagator can be rewritten in the Van Vleck form

〈b|B̂|a〉 =

√
∂2W

∂a∂b∗
exp

[
πDW (b∗, a)

]
exp

[
− πD

(|a|2 + |b|2) /2
]

+ o(1)

• where W (b∗, a) is a generating function for the classical baker’s map
rewritten in terms of the complex variables a and a∗

• 0 < θ < 1? More complicated derivation, but same end result.

• θ = 1? Something different occurs.
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Classical limit?

• 2 different classical limits:
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Classical limit?

• 2 different classical limits:

• Increasing the number of position bits while keeping constant the number of
momentum bits creates additional ‘humps’ in the wrong places.

• A stochastic mapping is implied in the classical limit ?
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Classical limit?

Conclusion

The Schack-Caves quantum baker’s maps have the proper classical limit, provided
the number of momentum bits is allowed to approach infinity in this limit.
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Entangling power

• The quantum baker’s map with n = N , where the number of momentum bits
is fixed at 0, is nonentangling, taking product states to product states.

• What is the entangling power of the remaining quantum baker’s maps?

• We might expect such maps to be good at creating random states in Hilbert
space.

• To calibrate our investigation, we first need to calculate the expected value of
entanglement for random pure states.



21

Entangling power

• When a bipartite quantum system is in an overall pure state the unique measure
of entanglement is given by the subsystem entropy.

• If we sample random pure states in HD according to the unitarily invariant
Haar measure then the mean linear entropy of a subsystem with dimension
µ < D is

〈SL〉 = β
(µ− 1)(ν − 1)

µν + 1
(Lubkin, 1978)

• the variance is

〈SL
2〉 − 〈SL〉2 = β2 2(µ2 − 1)(ν2 − 1)

(µν + 3)(µν + 2)(µν + 1)2

where • SL ≡ β(1− tr ρ2) • β ≡ µ/(µ− 1) (µ ≤ ν )
• 0 ≤ SL ≤ 1 • µν = D
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Entangling power

• For N -qubit random states, D = 2N , and a partition dividing the subsystems
equally µ = ν =

√
D
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P
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• Typical multi-qubit pure states have HIGH levels of bipartite entanglement.

• The entanglement distributions are highly localized about the mean.
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Entangling power

• Baking entangled states with N = 8. Bipartite entanglement with a partition
between the 4 least significant and 4 most significant qubits:
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• Baking entangled states with N = 8. Bipartite entanglement with a partition
between the 4 least significant and 4 most significant qubits:

0

20

40

10 iterationsn = 1

0

10

20

n = 2

0

10

20

n = 3

0

10

20

P
(S

L) n = 4

0

10

20

n = 5

0

10

20

n = 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

S
L

n = 7



23

Entangling power
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Entangling power
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Entangling power
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Entangling power
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Entangling power
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Entangling power

• Baking entangled states with N = 8. Bipartite entanglement with a partition
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Entangling power

• Baking entangled states with N = 8. Bipartite entanglement with a partition
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Entangling power

• Baking entangled states with N = 8. Bipartite entanglement with a partition
between the 4 least significant and 4 most significant qubits:
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Entangling power

• Baking entangled states with N = 8. Bipartite entanglement with a partition
between the 4 least significant and 4 most significant qubits:
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Entangling power

• We can also study pairwise (mixed-state) entanglement using the concurrence.

• The concurrence of a two-qubit density operator ρ is

C(ρ) ≡ max{0, λ1 − λ2 − λ3 − λ4}

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square roots of the eigenvalues of
ρ(σy ⊗ σy)ρ∗(σy ⊗ σy). The complex conjugation is taken in the standard qubit
basis.

• It is more interesting to investigate the quantity

c(ρ) ≡ λ1 − λ2 − λ3 − λ4 (−1/2 ≤ c ≤ 1)

Then C(ρ) = max{0, c(ρ)}.
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Entangling power

• We take ρ to be the density operator after tracing out all but two qubits of
our N -qubit pure state. For random states:
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• Typical multi-qubit pure states have LOW levels of pairwise entanglement.
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Entangling power

• Baking entangled states with N = 8. The pairwise entanglement between the
least significant and most significant qubit:
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Entangling power

• A proposal for a measure of multipartite entanglement is the Meyer-Wallach
measure Q which can be written as the average subsystem linear entropy of the
constituent qubits:

Q(ψ) = 2

(
1− 1

N

N∑

k=1

tr ρ2
k

)

where ρk is the density operator for the k-th qubit after tracing out the rest.

• The mean and variance are

〈Q〉 =
D − 2
D + 1

〈Q2〉 − 〈Q〉2 =
6(D − 4)

(D + 3)(D + 2)(D + 1)N
+

18D

(D + 3)(D + 2)(D + 1)2
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Entangling power

• For N -qubit random states:
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• Typical multi-qubit pure states have HIGH levels of multipartite entanglement
according to the measure Q.
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Entangling power

• Baking entangled states with N = 8. The multipartite entanglement according
to the measure Q:
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Entangling power

Conclusion

The quantum baker’s maps are, for the most part, good at generating
entanglement, producing multipartite entanglement close to that expected in
random states.

We should expect high levels of entanglement creation in quantum maps that are
chaotic in their classical limit. Such maps have a dynamical behavior that
produces correlations between the coarse and fine scales of phase space. This
behavior is described classically in the form of symbolic dynamics. Investigations
into entanglement production, using the above qubit bases, allow us to
characterize the quantum version of such correlations.
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Relationship between the Entangling power and Classical limit?

• Define the long time saturation value of Q:

〈Q〉 ≡ lim
m→∞

1
m

m∑

k=1

〈Q〉k
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|

• No clear relationship between the entangling power and spurious classical
limits.
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Summary

• The Schack-Caves quantum baker’s maps have the proper classical limit,
provided the number of momentum bits is allowed to increase in this limit.

• The quantum baker’s maps are, for the most part, good at generating
entanglement, producing multipartite entanglement close to that expected in
random states.

• Future directions might include exploring

B multipartite entanglement production in regular systems via the qubit bases
B tests of quantum chaos as applied to the quantum baker’s maps, paying

particular attention to the nonentangling trivial quantum baker’s map


