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. Introduction and motivation: Why trap an atom in a cavity?

. State-insensitive cooling and trapping of a single atom in an optical cavity
. Cavity QED “By The Numbers” (briefly)

. A One-Atom Laser in the Regime of Strong Coupling

. Deterministic Generation of Single Photons

. Summary and Outlook
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Strong Coupling Condition:

g > (v,K)

g 2w x 32 MHz
Y 2w X 2.6 MHz
Kk = 21 x 4.2 MHz

g = dipole interaction strength between
atom and cavity mode (of volume V)

hw
g X\

2g = Rabi Frequency of a Single Photon

Rate of coherent exchange between
excitation of
atom and field




Cirac et al PRL 78, 3221 (1997) ‘ /l’b >

van Enk et al PRL 78, 4293 (1997) l '

Atomic internal states .

store quantum
information locally, Q2 ( _t)

Cavity used for atom-
field interaction
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Heart of the scheme:
Single photon generation
from one atom trapped in a cavity.




ca vity QED wit Trappe Multiple beam FORT for cavity QED
Atoms: Various Approaches M. Chapman, GIT, G Rempe, MPI

E Magnetic Micro-traps

H. Mabuchi, Caltech
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Conveyor Belt for Single Atoms:
D. Meschede, Bonn

Our Scheme: Intracavity FORT

CQED proge
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FORT beam




Intracavity Far-Off-Resonance Trap (FORT)

Transmission Spectrum of a Fabry-Perot Cavity (Length=43 pm)

(Longitudinal modes only, i.e. L=nA/2) Frequency _
FSR= 106
J\ J\\ Jkg, THZJ JM M J\
Ar=935.6 nm 852 4 835.7
FORT e Possible to store atoms Cs D2 line Ca‘ﬁgéé:’Ck
for seconds in this nearly
{ \[ conservative potential {}
_ e Guaranteed overlap with Weak
Strong Classical CQED mode (in the Driving Field:
Driving Field: transverse direction) ~ 1 pW input
~ mW input P PY
nvv Input, <1 JW inside cavity
~ W inside cavity (~ 1 photon)
(~ 107 photons)

TRAPPING CAVITY QED
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Dipole Trap Overview for a Two Level Atom
a.k.a. Far-Off-Resonance-Trap (FORT)

Classical picture: A dipole moment is induced in atom by optical field E

Atom then sees a dipole force toward higher intensities I(r) (attractive for red
detuning)

N __ 3w Y r(= 1 :
U(r) = ng AI(T) O A el T

TLI_SC(F) — %U(F) ho

where A = w — wq 04 Yo




Detalled calculation of Excited State Stark shifts:

The picture is a bit more complicated...

Spectroscopic Characteristics of Neutral Atoms
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Cesium + 935 nm = A State-Insensitive Trap

SN o) ——— |c>_/lk

Red-detuned Red-detuned
driving laser driving laser
b~ 3 Yo | = |Iy— U

Red-detuned Red-detuned
driving laser driving laser

Transition of interest nearly unshifted by trap:
Cavity QED is then unperturbed by Stark shifts, which otherwise cause
unwanted effective detunings




Cavity QED “By the Numbers”
J. McKeever, |. R. Buck, A. D. Boozer and H. ]. Kimble, quant-ph/0403 12|

Cooling
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* Atoms dropped into cavity with probe, side beams and FORT continuously on
* | eads to interesting and useful effect



Demonstrated ability to resolve intracavity atom number in
real time

See quant-ph/0403 121 for details

Histogram built up
Typical trace (one event) \ from 500 events
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Scheme can be used to prepare
specific atom number
Steps in transmission always increase in time (although loading still probabilistic)




A One-Atom Laser in a Regime of Strong Coupling
J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H.J. Kimble
Nature, 425, 268 (2003)

Pumping Scheme in Cesium\




Overview of Experiment
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One-Atom Laser -
Observation of output vs. time
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Experimental Data - Intracavity photon number <n> vs. pump I
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Photon Statistics of the Emitted Light from the One-Atom Laser -
Investigate via measurements of the joint probability of photoelectric detection
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Time-resolved coincidence counts n(z)

obtained from cross correlation <i1(t)i2(t + r)>



Intensity Correlation Function
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: f(t) :> <: f(t +7) :> APD,

- Deduce g(z) (7) from time-resolved coincidence counts N(t)
+ Set pump I; at “high" level well beyond “knee" for <n> vs. I,
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One-Atom Laser - Photon statistics from 4-state model
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Intensity Correlation Function
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: f(t) :> <: f(t +7) :> APD,

- Deduce g(z) (7) from time-resolved coincidence counts N(t)
- Set pump I; at approximate “knee" for <n> vs. I,
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Distinctions from Prior Work

* "Single-atom” micro-masers and lasers - Walther, Haroche, Feld, ...
Steady state is reached through the /ncremental contributions
of many atoms that transit the cavity, even if one by one o _

(in the microwave case) or few by few (in the optical case) . °

* A "one-and-the-same-atom” laser - Steady state achieved is reached with
one atom in time 7~ 107 sec as compared to frapping time 7~ 10! sec.
* Large theoretical literature on "one-atom” lasers
* Mu and Savage 92
* H.-J. Briegel ... ; H. Ritsch ... ; H. Walther ... ;

Q
P. R. Rice ... ; Kilin and Karlovich 02; ...
AVVWW
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Summary - A One-Atom Laser in a Regime of Strong Coupling

4 / Pumping Scheme \
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* Measurements of photon statistics exhibit photon antibunching (with
inference of sub-Poissonian statistics) and are in reasonable accord with theory
- Approximately stationary source of nonclassical light as a Gaussian beam

* Remaining issues -

* Measurements of optical spectrum of output

- Cooling of axial motion - new scheme “invented” by D. Boozer; implement in lab
* Determine atomic location along axial standing waves of FORT and cavity QED

-Comparison of theory & experiment: no time to discuss here, but there is
reasonable agreement with data. See quant-ph/0309133, and Suppl. Info.



Deterministic Generation of Single Photons
from One Atom Trapped in a Cavity

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich and H. |. Kimble,
Science 303, 1992 (2004)

Convert one-atom laser to a
pulsed excitation scheme in
order to realize the basic

building block of a quantum

. network




Why Single Photons?

Advantages over classical light sources

Secure Quantum Cryptography
* Laser pulses containing nonzero multi-photon probability can leak
information to an eavesdropper

Linear Optics Quantum Computation (Knill, Laflamme & Milburn, Nature 409, 46 (2001)
* Scheme for universal quantum computation requires only
single-photon sources, beamsplitters, phase shifters and detectors

Quantum Networks
Use photons as carriers of quantum information

Staﬁqgl?&jtﬂ@i]:ﬁore
@) ’b>\_/|_§’b> @) th;'&st photon

uction:
Flying qubits
Need téatransfer local
Single RhatemGenerstion
the field, and back.
Sets our scheme apart from
other photon sources
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A= 852 nm

.93 Gaussian

‘ Spatial
Q4 Mode

User-controlled pulse shapes
=~ 100 ns

Strong coupling

Efficiency =»100%
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Experimental Results: Pulse shape and Efficiency

14000 production attempts per trapped at
Histogram of “click” times procuction attempts per trapped atom

Efficiency?
n(t)
120 ns
] (FWHM) Inferred total cavity output:
(69 + 10)%
0~ . : . . —
Q3 1 Q3 Consistent with

o OFF 100 %

intracavity production (* 18%)

about 3%

\ (Based on measured mirror losses.)
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% % N Flna!
detection
i/\/ efficiency




Weak Laser Pulses
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But, worse than expected...




Comparison of Intensity Autocorrelation Functions

for Several Single-Photon Sources
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a) Single trapped atom — current work

b), ¢) Quantum dot coupled to disc resonator — P. Michler et al., Science 290, 2282 (2000).

d) Quantum dot coupled to vertical cavity — M. Pelton et al., Phys. Rev. Lett. 89, 233602 (2002).
e) Freely falling cold atoms — A. Kuhn et al., Phys. Rev. Lett. 89, 067901 (2002).
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Two-photon “contamination” is limited by
rare events (about 3%) in which two
atoms are loaded into trap

Measure dramatic improvement in
suppression factor R at long
trapping times

Using experimentally
demonstrated scheme we can
prepare one atom on demand.

(quant-ph/0403121)

T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Trapping time (seconds)



Single Photon Generation: Summary

Single photons on demand with high efficiency

(consistent with 100% inside cavity)

(improvements being made, 109 possible)

14000 photons per trapped atom

Scheme is coherent and reversible enabling implementation of quantum networks

Output is highly non-classical:
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R >150

20

C(t)

15

Future Plans:

* Reversibility

]' * |ndistinguishability
| El | I |. | 1_
R A H * Quantum Entanglement of

 (us) Distantly Separated Atoms




What Next?

025
t=3s

Already demonstrated:

W v trap atoms in the cavity for 2-3 s

e ¥_ ObSErve continuously and “count” atoms in real time

N
®

15

0 sl v produce a CW gaussian beam of nonclassical light

v efficiently create single photons on demand

Still ahead:
Quantum schemes require control of all degrees of freedom
1. Internal state:
Control Zeeman sublevel via optical pumping and
well-defined magnetic field
Should enable generation of polarized photons

2. Atomic motion (temperature)
Ideally would like to cool to the ground state of
the axial motion



Work in progress: Raman transitions
A. D. Boozer, A. Boca, R. Miller, H. J. Kimble

A tool for manipulating the internal state of an intracavity atom,
and for implementing sideband cooling

| 92) ,
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o Qe ~ L

‘ Ql> Effective
| g1) picture

> g1, g2 can be hyperfine levels (Zeeman sublevels) of Cs ground state
» coherently drive transitions between hyperfine ground states, like a two-

level atom with no spontaneous emission > . =Raman laser (on-axis)
{= -

» ), =FORT! 2-in-1 laser
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