
15 Duality for SUSY QCD

15.1 The Classical Moduli Space for F ≥ N

SU(N) SU(F ) SU(F ) U(1) U(1)R

Q 1 1 F−N
F

Q 1 -1 F−N
F

Recall

Da = g(Φ∗in(T a)m
n Φmi − Φin(T a)m

n Φ∗
mi) (15.1)

and the potential is:

V =
1
2
DaDa . (15.2)

Define

Dn
m ≡ 〈Φ∗inΦmi〉 (15.3)

D
n
m = 〈ΦinΦ∗

mi〉 (15.4)

Dn
m and D

n
m are N × N positive semi-definite Hermitian matrices. In a

vacuum state we must have:

Da = gT am
n (Dn

m −D
n
m) = 0 (15.5)

Since T a is a complete basis for traceless matrices, we must have

Dn
m −D

n
m = ρI (15.6)

Dn
m can be diagonalized by an SU(N) gauge transformation

U †DU (15.7)

D =


|v1|2

|v2|2
. . .

|vN |2

 (15.8)
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In this basis D
n
m must also be diagonal, with eigenvalues |vi|2. This tells us

that

|vi|2 = |vi|2 + ρ (15.9)

Dn
m and D

n
m are invariant under flavor transformations, thus, up to flavor

transformations, we can write

〈Φ〉 =

 v1 0 . . . 0
. . .

...
...

vN 0 . . . 0

 (15.10)

〈Φ〉 =



v1

. . .
vN

0 . . . 0
...

...
0 . . . 0


(15.11)

At a generic point in the moduli space the SU(N) gauge symmetry is broken
completely and there are 2NF − 2(N2 − 1) massless chiral supermultiplets.
We can descibe these light degrees of freedom in a gauge invariant way by
scalar “meson” and “baryon” fields and there superpartners:

M j
i = ΦjαΦαi (15.12)

Bi1,...,iN = Φα1i1 . . .ΦαN iN εα1,...,αN (15.13)

B
i1,...,iN = Φα1i1 . . .ΦαN iN εα1,...,αN (15.14)

(15.15)

The fermion partners of these fields are products of scalars and fermions.

Since the fields M , B and B have 2

(
F
N

)
+ F 2 components there are

constraints relating them, since they are constructed out of the same fields.
For example

Bi1,...,iN B
j1,...,jN = M j1

[i1
. . .M jN

iN ] (15.16)

where [ ] denotes antisymmetrization.
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Up to flavor transformations the moduli space is described by:

〈M〉 =



v1v1

. . .
vNvN

0
. . .

0


(15.17)

〈B1,...,N 〉 = v1 . . . vN (15.18)

〈B1,...,N 〉 = v1 . . . vN (15.19)

with all other components set to zero. The rank of M is at most N . If it
is less than N , then B or B (or both) vanish. If the rank of M is k, then
SU(N) is broken to SU(N − k) with F − k flavors.

15.2 The Quantum Moduli Space for F ≥ N

Recall that the ADS superpotential made no sense for F ≥ N however the
vacuum solution

M j
i = (m−1)j

i

(
detmΛ3N−F

) 1
N (15.20)

is still sensible. Giving large masses to flavors N through F and matching
the gauge coupling at the mass thresholds gives

Λ3N−F detmH = Λ2N+1
N,N−1 (15.21)

The low-energy effective theory has N−1 flavors and an ADS superpotential.
If we give a small mass to the light flavors we have

M j
i = (m−1

L )j
i

(
detmLΛ2N+1

N,N−1

) 1
N

= (m−1
L )j

i

(
detmLdetmHΛ3N−F

) 1
N (15.22)

Since the masses are holomorphic parameters of the theory, this relationship
can only break down at isolated points, so eq. (15.20) is true in general. For
F ≥ N we can take mi

j → 0 with components of M finite or zero. So the
vacuum degeneracy is not lifted and there is a quantum moduli space for
F ≥ N . However the classical constraints between M , B and B may be
modified.
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15.3 Duality

For F ≥ 3N we lose asymptotic freedom, so the theory can be understood
as a weakly coupled low-energy effective theory. For F just below 3N we
have an infrared fixed point. Recall

β(g) = − g3

16π2

(3N − F (1− γ))

1−N g2

8π2

(15.23)

where

γ = − g2

8π2

N2 − 1
N

+O(g4) (15.24)

So

16π2β(g) = −g3 (3N − F )− g5

8π2

(
3N2 − FN − F

N2 − 1
N

)
+O(g7) (15.25)

For F = 3N − εN

16π2β(g) = −g3εN − g5

8π2

(
3(N2 − 1) +O(ε)

)
(15.26)

So there is a IR fixed point at

g2
∗ =

8π2

3
N

N2 − 1
ε (15.27)

A general result is that a scale invariant theory of fields with spin ≤ 1
is actually conformally invariant. In a conformal SUSY theory the SUSY
algebra is extended to a superconformal algebra. A particular R charge
enters the algebra in an important way. One finds that the dimensions of
fields are bounded

D ≥ 3
2
|Rsc| (15.28)

and the inequality is saturated for chiral and anti-chiral fields:

D =
3
2
Rsc, for chiral fields (15.29)

D = −3
2
Rsc, for anti− chiral fields (15.30)
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Since

Rsc(O1O2) = Rsc(O1) + Rsc(O2) (15.31)

we have for chiral fields

D(O1O2) = D(O1) + D(O2) (15.32)

In general Rsc is ambiguous, since we can form linear combinations of U(1)’s,
but for SUSY QCD Rsc is unique since we must have

Rsc(Q) = Rsc(Q) (15.33)

so we can identify the R charge we have been using with Rsc. So at the IR
fixed point

D(M) = D(ΦΦ) = 2 + γ∗ =
3
2
2
(F −N)

F

= 3− 3N

F
(15.34)

We can check that the exact β function vanishes:

β ∝ 3N − F + Fγ∗ = 0 (15.35)

For a scalar field in a conformal theory we also have

D(φ) ≥ 1 (15.36)

with equality for a free field. Requiring that D(QQ) ≥ 1 implies

F ≥ 3
2
N (15.37)

In a conformal theory (even if it is strongly coupled) we don’t expect any
global symmetries to break, so ‘t Hooft anomaly matching should apply to
any description of the low-energy degrees of freedom.

Seiberg found a solution to the anomaly matching:

SU(F −N) SU(F ) SU(F ) U(1) U(1)R

q 1 N
F−N

N
F

q 1 − N
F−N

N
F

M̃ 1 0 2F−N
F
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The anomalies match as follows:

SU(F )3 : −(F −N) + F = N

U(1)SU(F )2 :
N

F −N
(F −N)

1
2

=
N

2

U(1)RSU(F )2 :
N − F

F
(F −N)

1
2

+
F − 2N

F
F

1
2

= −N2

2F
U(1)3 : 0
U(1) : 0
U(1)U(1)2R : 0

U(1)R :
(

N − F

F

)
2(F −N)F +

(
F − 2N

F

)
F 2 + (F −N)2 − 1

= −N2 − 1

U(1)3R :
(

N − F

F

)3

2(F −N)F +
(

F − 2N

F

)3

F 2 + (F −N)2 − 1

= −2N4

F 2
+ N2 − 1

U(1)2U(1)R :
(

N

F −N

)2 N − F

F
2F (F −N) = −2N2 (15.38)

This theory admits a unique superpotential:

W = λM̃ j
i φjφ

i (15.39)

This ensures that the two theories have the same number of degrees of
freedom since the M̃ eq. of motion removes the color singlet φφ degrees of
freedom. The dual theory also has baryon operators:

bi1,...,iF−N = φα1i1 . . . φαF−N iF−N εα1,...,αF−N (15.40)
b i1,...,iF−N = φα1i1 . . . φαF−N iF−N

εα1,...,αF−N (15.41)
(15.42)

The two moduli spaces have a mapping

M ↔ M̃

Bi1,...,iN ↔ εi1,...,iN ,j1,...jF−N bj1,...,jFN

B
i1,...,iN ↔ εi1,...,iN ,j1,...jF−N bj1,...,jFN

(15.43)
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The counting works because 2FN − 2(N2 − 1) = 2FÑ − 2(Ñ2 − 1) where
Ñ = F − N is the number of colors in the dual theory. The one-loop β
function in the dual theory is

β(g̃) ∝ −g̃3(3Ñ − F ) = −g̃3(2F − 3N) (15.44)

So the dual theory loses asymptotic freedom when F ≤ 3N/2. When

F = 3Ñ − εÑ (15.45)

there is a perturbative fixed point at

g̃2
∗ =

8π2

3
Ñ

Ñ2 − 1

(
1 +

F

Ñ

)
ε (15.46)

λ2
∗ =

16π2

3Ñ
ε (15.47)

At this fixed point D(M̃φφ) = 3, so the superpotential term is marginal.
At λ = 0 M̃ has no interactions so its dimension is 1. We can calculate

the dimension of φφ from the R charge for F > 3N/2:

D(φφ) =
3(F − Ñ)

F
=

3N

F
< 2 (15.48)

So the superpotential is a relevant operator (not marginal) and there is an
unstable fixed point for

g̃2 =
8π2

3
Ñ

Ñ2 − 1
ε (15.49)

λ2 = 0 (15.50)

So we have found that SUSY QCD has an interacting IR fixed point for
3N/2 < F < 3N . Such conformal theories have no particle interpretation,
but anomalous dimensions are physical quantities.

For N + 1 < F ≤ 3N/2 the IR fixed point of the dual theory is trivial
(aymptotic freedom is lost in the dual):

g̃2
∗ = 0 (15.51)

λ2
∗ = 0 (15.52)

Since M̃ has no interactions it has dimension 1, and there is an accidental
U(1) symmetry. For this range of F , Rsc is a linear combination of R and this
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accidental U(1). This is consistent with the relation D(M̃) = (3/2)Rsc(M̃).
Surprisingly in this range we find in the IR free massless composite gauge
bosons, quarks, mesons, and their superpartners.

What we have found is two different theories that have infrared fixed
points that describe the same physics. This is just another example of finding
two theories which are in the same universality class. A well known example
of this is QCD and the chiral Lagrangian. This is a useful thing to do if one
theory is strongly coupled and the other is weakly coupled. (TWo different
theories could not both be weakly coupled and describe the same physics.)
Here we see that even when the dual theory cannot be thought of as being
composites of the original degrees of freedom it provides a weakly coupled
description in the region where the original theory is strongly coupled. The
name duality is tacked-on because both theories happen to be gauge theories.

It is common (though confusing) to write

λM̃ =
M

µ
(15.53)

which trades λ for a scale µ and uses the same symbol, M , for fields in the
two different theories.

15.4 Integrating out a flavor

If we give a mass to one flavor in the original theory we have a superpotential

W = mΦF ΦF (15.54)

In the dual theory we have

Wd =
1
µ

M j
i φ

i
φj + mMF

F (15.55)

The eq. of motion for MF
F is

δWd

δMF
F

=
1
µ

φ
F
φF + m (15.56)

So φ
F
φF = −µm. We saw that along such a D flat direction we have a

theory with one less color, one less flavor, and some singlets. The spectrum
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is:

SU(F −N − 1) SU(F − 1) SU(F − 1)
q′ 1
q′ 1
M ′ 1
q′′ 1 1
q′′ 1 1
S 1 1 1

MF
j 1 1

M j
F 1 1

MF
F 1 1 1

The superpotential is

Weff =
v

µ

(
M j

F φ′′
j + MF

i φ
′′i + MF

F S
)

+ M ′φ
′
φ′ (15.57)

So we can integrate out M j
F , φ′′

j , MF
i , φ

′′i, MF
F , and S. This leaves just the

dual of SU(N) with F − 1 flavors.

15.5 Consistency

We have seen that the conjectured duality satisfies three non-trivial consis-
tency checks:

• The global anomalies of the original quarks and gauginos match those
of the dual quarks, dual gauginos, and “mesons”.

• The moduli spaces have the same dimenions and the gauge invariant
operators match:

M ↔ M̃

Bi1,...,iN ↔ εi1,...,iN ,j1,...jF−N bj1,...,jFN

B
i1,...,iN ↔ εi1,...,iN ,j1,...jF−N bj1,...,jFN

(15.58)

• Integrating out a flavor in the original theory results in an SU(N)
theory with F−1 flavors, which should have a dual with SU(F−N−1)
and F − 1 flavors. Starting with the dual of the original theory, the
mapping of the mass term is a linear term for the “meson” which
forces the dual squarks to have a VEV and Higgses the theory down
to SU(F −N − 1) and F − 1 flavors.
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The duality exchanges weak and strong coupling and also classical and
quantum effects. For example in the original theory M satisfies a classical
constaint rank(M) ≤ N . In the dual theory there are F − rank(M) light
dual quarks. If rank(M) > N then the number of light dual quarks is less
than Ñ = F − N , and an ADS superpotential is generated, so there is no
vacuum. Thus in the dual, rank(M) ≤ N is enforced by quantum effects.
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